Variational Message Passing
نویسندگان
چکیده
Bayesian inference is now widely established as one of the principal foundations for machine learning. In practice, exact inference is rarely possible, and so a variety of approximation techniques have been developed, one of the most widely used being a deterministic framework called variational inference. In this paper we introduce Variational Message Passing (VMP), a general purpose algorithm for applying variational inference to Bayesian Networks. Like belief propagation, VMP proceeds by sending messages between nodes in the network and updating posterior beliefs using local operations at each node. Each such update increases a lower bound on the log evidence (unless already at a local maximum). In contrast to belief propagation, VMP can be applied to a very general class of conjugate-exponential models because it uses a factorised variational approximation. Furthermore, by introducing additional variational parameters, VMP can be applied to models containing non-conjugate distributions. The VMP framework also allows the lower bound to be evaluated, and this can be used both for model comparison and for detection of convergence. Variational message passing has been implemented in the form of a general purpose inference engine called VIBES (‘Variational Inference for BayEsian networkS’) which allows models to be specified graphically and then solved variationally without recourse to coding.
منابع مشابه
Non-conjugate Variational Message Passing for Multinomial and Binary Regression
Variational Message Passing (VMP) is an algorithmic implementation of the Variational Bayes (VB) method which applies only in the special case of conjugate exponential family models. We propose an extension to VMP, which we refer to as Non-conjugate Variational Message Passing (NCVMP) which aims to alleviate this restriction while maintaining modularity, allowing choice in how expectations are ...
متن کاملCentralized Estimation of Adhesion Loss in Wheel – Rail System Using Variational Bayes and Variational Message Passing
متن کامل
Gates
Gates are a new notation for representing mixture models and context-sensitive independence in factor graphs. Factor graphs provide a natural representation for message-passing algorithms, such as expectation propagation. However, message passing in mixture models is not well captured by factor graphs unless the entire mixture is represented by one factor, because the message equations have a c...
متن کاملGates: A graphical notation for mixture models
Gates are a new notation for representing mixture models and context-sensitive independence in factor graphs. Factor graphs provide a natural representation for message-passing algorithms, such as expectation propagation. However, message passing in mixture models is not well captured by factor graphs unless the entire mixture is represented by one factor, because the message equations have a c...
متن کاملSparse Message Passing and Efficiently Learning Random Fields for Stereo Vision
Message passing algorithms based on variational methods and belief propagation are widely used for approximate inference in a variety of directed and undirected graphical models. However, inference can become extremely slow when the cardinality of the state space of individual variables is high. In this paper we explore sparse message passing to dramatically accelerate approximate inference. We...
متن کاملFully simplified multivariate normal updates in non-conjugate variational message passing
Fully simplified expressions for Multivariate Normal updates in non-conjugate variational message passing approximate inference schemes are obtained. The simplicity of these expressions means that the updates can be achieved very efficiently. Since the Multivariate Normal family is the most common for approximating the joint posterior density function of a continuous parameter vector, these ful...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 6 شماره
صفحات -
تاریخ انتشار 2005